Parsing Birdsong with Deep Audio Embeddings

Irina Tolkova¹*, Brian Chu¹*, Marcel Hedman¹*, Stefan Kahl² and Holger Klinck²

¹School of Engineering and Applied Sciences, Harvard University, Cambridge, MA

²K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY

(*equal contribution)

AI4SG Workshop at IJCAI 2021

Introduction

G

Irina Tolkova

Brian Chu

Marcel Hedman

Dr. Stefan Kahl

Prof. Holger Klinck

Thank you to **Prof. Milind Tambe**, **Boriana Gjura**, and **Doria Spiegel** for their support on this project!

Over the last 50 years, the US has lost an estimated **3 billion birds**.

To prevent further loss, it is necessary to understand **large-scale population dynamics**.

Over the last 50 years, the US has lost an estimated **3 billion birds**.

To prevent further loss, it is necessary to understand **large-scale population dynamics**.

Advances in computing have driven an interest in **automated biodiversity monitoring**, such as through detection and classification of animals within camera traps or drone

Photo credit: WWF India

Photo credit: ConservationDrones.org

Over the last 50 years, the US has lost an estimated **3 billion birds**.

To prevent further loss, it is necessary to understand large-scale population dynamics.

Advances in computing have driven an interest in **automated biodiversity monitoring**, such as through detection and classification of animals within camera traps or drone

Photo credit: WWF India

Photo credit: ConservationDrones.org

These methods are successful for some taxonomic groups...

... but challenging to use for **birds**.

Over the last 50 years, the US has lost an estimated **3 billion birds**.

To prevent further loss, it is necessary to understand large-scale population dynamics.

Advances in computing have driven an interest in **automated biodiversity monitoring**, such as through detection and classification of animals within camera traps or drone

Photo credit: WWF India

Photo credit: ConservationDrones.org

These methods are successful for some taxonomic groups...

... but challenging to use for **birds**.

Could audio be used for automated monitoring?

How is audio processed?

Note that by transforming audio data to the time-frequency domain, this becomes an **image analysis problem**! Consequently, detection and classification of birdsong is achieved with **convolutional neural networks** (CNNs).

BirdNET is a **citizen-science** biodiversity monitoring project developed by the Cornell Lab of Ornithology.

BirdNET is a **citizen-science** biodiversity monitoring project developed by the Cornell Lab of Ornithology.

BirdNET is a **citizen-science** biodiversity monitoring project developed by the Cornell Lab of Ornithology.

Then, anyone with the BirdNET app can submit recordings of birds and see the classification.

BirdNET is a **citizen-science** biodiversity monitoring project developed by the Cornell Lab of Ornithology.

How well does this system perform?

Evaluations of BirdNET have shown **15-20% false positive rates**.

Evaluations of BirdNET have shown **15-20% false positive rates**.

The training data from **Xeno Canto** contains high-quality "focal" recordings, often taken with directional microphones.

Evaluations of BirdNET have shown 15-20% false positive rates.

The training data from **Xeno Canto** contains high-quality "focal" recordings, often taken with directional microphones.

In contrast, **BirdNET submissions** are taken with a cell phone in noisy real-world conditions.

Evaluations of BirdNET have shown 15-20% false positive rates.

The training data from **Xeno Canto** contains high-quality "focal" recordings, often taken with directional microphones.

In contrast, **BirdNET submissions** are taken with a cell phone in noisy real-world conditions.

Is there a way we can understand this domain shift and diagnose the misclassifications?

1

Pre-process the submitted BirdNET recordings by splitting them into overlapping 1-second segments, and selecting the segments with highest vocal activity.

Pre-process the submitted BirdNET recordings by splitting them into overlapping 1-second segments, and selecting the segments with highest vocal activity.

1

Calculate embeddings over these segments with pre-trained networks (VGGish and PANNs), along with a trained convolutional autoencoder.

Pre-process the submitted BirdNET recordings by splitting them into overlapping 1-second segments, and selecting the segments with highest vocal activity.

Calculate embeddings over these segments with pre-trained networks (VGGish and PANNs), along with a trained convolutional autoencoder.

Cluster the segments using k-means in the embedded space, and examine inter- and intra-specific structure.

Pre-process the submitted BirdNET recordings by splitting them into overlapping 1-second segments, and selecting the segments with highest vocal activity.

Calculate embeddings over these segments with pre-trained networks (VGGish and PANNs), along with a trained convolutional autoencoder.

Cluster the segments using k-means in the embedded space, and examine inter- and intra-specific structure.

By **incorporating expert labels** for clusters within intraspecific data, **generate alternative confidence scores** for each BirdNET recording, and **flag false positives**.

4

Prior Work in Embedding Bio-Acoustic Data

Sethi, Sarab S., et al. "Characterizing soundscapes across diverse ecosystems using a universal acoustic feature set." Proceedings of the National Academy of Sciences 117.29 (2020): 17049-17055

Sainburg, Tim, Marvin Thielk, and Timothy Q. Gentner. "Finding, visualizing, and quantifying latent structure across diverse animal vocal repertoires." PLoS computational biology 16.10 (2020): e1008228.

VGGish Pre-trained on AudioSet

VGGish is a CNN architecture for audio, inspired by the VGG network for image classification.

CNN architectures for large-scale audio classification <u>S Hershey, S Chaudhuri, DPW Ellis</u>... - ... on acoustics, speech ..., 2017 - ieeexplore.ieee.org Convolutional Neural Networks (CNNs) have proven very effective in image classification and show promise for audio. We use various CNN architectures to classify the soundtracks of a dataset of 70M training videos (5.24 million hours) with 30,871 video-level labels. We examine fully connected Deep Neural Networks (DNNs), AlexNet [1], VGG [2], Inception [3], and ResNet [4]. We investigate varying the size of both training set and label vocabulary, finding that analogs of the CNNs used in image classification do well on our audio ...

☆ 55 Cited by 1210 Related articles All 7 versions

Sethi et al showed very detailed structure of environmental soundscapes when analyzed with VGGish embeddings (right).

Sethi, Sarab S., et al. "Characterizing soundscapes across diverse ecosystems using a universal acoustic feature set." Proceedings of the National Academy of Sciences 117.29 (2020): 17049-17055

Pre-trained Audio Neural Networks (PANNs)

We looked at a recently-released (2020) set of pre-trained audio networks with high performance on classification tasks and an easy/accessible user interface.

Kong, Qiuqiang, et al. "Panns: Large-scale pretrained audio neural networks for audio pattern recognition." *IEEE/ACM Transactions on Audio, Speech, and Language Processing* 28 (2020): 2880-2894.

Convolutional Autoencoder

- An autoencoder aims to optimally reconstruct the data while passing it through an **information bottleneck**.
- The activations of this "bottleneck" middle layer can be interpreted as a lower-dimensional embedding.
- We used **4** convolutional layers and an embedding size of **128**.

Autoencoder Parameters:

Layer	Operation	In Size	Out Size	Kernel	
1	conv	100x100x1	49x49x32	4x4	
	relu	49x49x32	49x49x32		
2	conv	49x49x32	23x23x64	4x4	
	relu	23x23x64	23x23x64		
3	conv	23x23x64	10x10x128	4x4	
	relu	10x10x128	10x10x128	484	
4	conv	10x10x128	4x4x256	4x4	
	relu	4x4x256	4x4x246		
	flatten	4x4x256	4096		
5	fc	4096	128		
6	fc	128	4096		
	unflatten	4096	1x1x4096		
7	conv	1x1x4096	7x7x128	7x7	
	relu	7x7x128	7x7x128	/ \ /	
8	conv	7x7x128	20x20x64	8x8	
	relu	20x20x64	20x20x64	0.00	
9	conv	20x20x64	47x47x32	9x9	
	relu	47x47x32	47x47x32		
10	conv	47x47x32	100x100x1	8x8	
	sigmoid	100x100x1	100x100x1	010	

Visualizing Embeddings

We take BirdNET submissions classified as the Tawny Owl, split them into small overlapping windows, and calculate spectrograms.

Visualizing Embeddings

We take BirdNET submissions classified as the Tawny Owl, split them into small overlapping windows, and calculate spectrograms.

Next, we obtain 2048-D embeddings from the PANNs network, and use UMAP to project them to 2D for visualization.

Visualizing Embeddings

We take BirdNET submissions classified as the Tawny Owl, split them into small overlapping windows, and calculate spectrograms.

Next, we obtain 2048-D embeddings from the PANNs network, and use UMAP to project them to 2D for visualization.

Clusters and Samples for the Barred Owl

Xeno-Canto Samples

• We **apply k-means to obtain 12 clusters** in the high-dimensional embedding space.

Clusters and Samples for the Barred Owl

- We apply k-means to obtain 12 clusters in the high-dimensional embedding space.
- For each cluster:
 - we present random samples to an expert
 - **retrieve a binary label** indicating whether a cluster represents calls from this species

Clusters and Samples for the Barred Owl

- We apply k-means to obtain 12 clusters in the high-dimensional embedding space.
- For each cluster:
 - we present random samples to an expert
 - **retrieve a binary label** indicating whether a cluster represents calls from this species

X

X

X

X

X

Clusters and Samples for the Barred Owl

- We apply k-means to obtain 12 clusters in the high-dimensional embedding space.
- For each cluster:
 - we present random samples to an expert
 - **retrieve a binary label** indicating whether a cluster represents calls from this species

X

X

X

X

X

Clusters and Samples for the Barred Owl

- We apply k-means to obtain 12 clusters in the high-dimensional embedding space.
- For each cluster:
 - we present random samples to an expert
 - **retrieve a binary label** indicating whether a cluster represents calls from this species
- Next, for the BirdNET data:
 - we assign binary labels to each BirdNET
 segment based on its Xeno-Canto neighbors

BirdNET Samples

Clusters and Samples for the Barred Owl

Results

Qualitative Evaluation:

Embeddings allow interpretation of the data, and visualization of the domain shift between the Xeno-Canto and BirdNET datasets.

Using audio embeddings also reveals **different call types** within a single species, along with clusters of vocalizations from **other species**. Human-in-the-loop input can help to remove such erroneous samples from analysis.

Results

Qualitative Evaluation:

Embeddings allow interpretation of the data, and visualization of the domain shift between the Xeno-Canto and BirdNET datasets.

Using audio embeddings also reveals **different call types** within a single species, along with clusters of vocalizations from **other species**. Human-in-the-loop input can help to remove such erroneous samples from analysis.

Quantitative Evaluation:

Finally, we classify a BirdNET recording as a positive if it contains at least two "positive" segments.

We focus on the **precision** of this classification method, and specifically on **improvement on precision** (in bold) over the initial BirdNET classifier.

	Barred Owl			Common Crane			Common Loon		
Architecture	Accuracy	Precision	Recall	Accuracy	Precision	Recall	Accuracy	Precision	Recall
VGG-ish	0.65	0.52 (+.15)	0.61	0.47	0.40 (03)	0.45	0.58	0.05 (+.01)	0.44
W-L-CNN16	0.73	0.74 (+.37)	0.43	0.55	0.48 (+.05)	0.36	0.95	0.33 (+.29)	0.22
Autoencoder	0.57	0.44 (+.07)	0.63	0.40	0.39 (04)	0.71	0.96	0.50 (+.46)	0.11

Quantitatively, the PANNs network (W-L-CNN16) gives the best improvement in precision across species.

Conclusions, Next Steps, and Broader Impact

In summary, we have implemented a pipeline for processing BirdNET submissions, constructing embeddings, and analyzed latent structure and clustering.

We hope that this work can contribute to conservation efforts through passive acoustic monitoring.

Our next steps:

- Expand analysis to a greater number of species (particularly to songbirds)
- Incorporate false positive identification into the BirdNET classifier
- Use contrastive learning to better separate intraspecific call types

Broader Impact and Ethics

- Access to the BirdNET app will be limited by smartphone prevalence and public awareness.
- This may cause geographically variable performance, which is significant, as over-estimation of species population sizes may inhibit conservation measures for those species.
- Overall, the anticipated benefits to conservation greatly outweigh these risks.

Acknowledgements

We are very grateful to **Daniel Salisbury** for manually labeling the BirdNET data used in this work.

We also thank **Connor Wood** and **Ben Mirin** for feedback and species identification.

Additionally, we would like to thank Milind Tambe, Doria Spiegel, and Boriana Gjura for their support on this project.

Thank you all for listening! Questions?